
COP 4600: Intro To OS (Real-time Scheduling) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2011

Introduction To Operating Systems

Real-time Processor Scheduling

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4600/sum2011

COP 4600: Intro To OS (Real-time Scheduling) Page 2 © Dr. Mark Llewellyn

Real-Time Systems

• Real-time computing is becoming an increasingly

important discipline.

• The OS, and in particular the scheduler, is perhaps

the most important component of a real-time system.

• Real-time computing may be defined as that type of

computing in which the correctness of the system

depends not only on the logical result of the

computation but also on the time at which the results

are produced.

COP 4600: Intro To OS (Real-time Scheduling) Page 3 © Dr. Mark Llewellyn

Examples of Real-Time Systems

• Control of laboratory experiments

• Process control in industrial plants

• Robotics

• Air traffic control

• Telecommunications

• Military command and control systems

• Medical diagnostic and life-support systems

COP 4600: Intro To OS (Real-time Scheduling) Page 4 © Dr. Mark Llewellyn

Real-Time Systems

• To define a real-time system, we need to define what

is meant by a real-time process or task.

• In general, in a real-time system, some of the tasks

are real-time tasks, and these have a certain degree of

urgency associated with them.

• Such tasks are attempting to control or react to events

that take place in the outside world

• Because these events occur in “real time”, a real-time

task must be able to keep up with the events with

which it is concerned.

COP 4600: Intro To OS (Real-time Scheduling) Page 5 © Dr. Mark Llewellyn

Real-Time Systems

• Usually, a deadline is associated with a particular task.

• Deadlines may represent either a start time or a completion

time.

• Real-time tasks are typically classified as either hard or soft.

• A hard real-time task is one that must meet its deadline;

otherwise it will cause unacceptable damage or a fatal error

to the system.

• A soft real-time task has an associated deadline that is

desirable but not mandatory; it still makes sense to schedule

and complete the task even if its deadline has passed.

COP 4600: Intro To OS (Real-time Scheduling) Page 6 © Dr. Mark Llewellyn

Real-Time Systems

• Another characteristic of real-time tasks is whether they are

periodic or aperiodic.

• An aperiodic task has a deadline by which it must start or

finish, or it may have a constraint on both the start and

finish time.

• For a periodic task, the deadline(s) may be stated a fashion

such as “once per period T” or “exactly T units of time

apart.”

COP 4600: Intro To OS (Real-time Scheduling) Page 7 © Dr. Mark Llewellyn

Characteristics of Real-Time Operating Systems

• Real-time operating systems can be characterized as

having unique requirements in five general areas:

1. Determinism

2. Responsiveness

3. User control

4. Reliability

5. Fail-soft operation

COP 4600: Intro To OS (Real-time Scheduling) Page 8 © Dr. Mark Llewellyn

Characteristics of Real-Time Operating Systems

Determinism

– An OS is deterministic to the extent that it performs operations at

fixed, predetermined times or within predetermined time

intervals.

– When multiple processes are competing for resources and

processor time, no system will be fully deterministic.

– In a real-time OS, process requests for service are dictated by

external events and times.

– The extent to which an OS can deterministically satisfy requests

depends first on the speed with which it can respond to interrupts

and, second on whether the system has sufficient capacity to

handle all requests within the required time.

COP 4600: Intro To OS (Real-time Scheduling) Page 9 © Dr. Mark Llewellyn

Characteristics of Real-Time Operating Systems

Determinism (cont.)

– One useful measure of the ability of an OS to function

deterministically is the maximum delay from the arrival of

a high priority device interrupt to when servicing the

interrupt begins.

– In non-real-time OS, this delay may be in the range of tens

to hundreds of milliseconds, while in a real-time OS this

delay may have an upper bound of anywhere from a few

microseconds to a millisecond.

COP 4600: Intro To OS (Real-time Scheduling) Page 10 © Dr. Mark Llewellyn

Responsiveness

– Determinism is concerned with how long an OS delays
before acknowledging an interrupt. Responsiveness is
concerned with how long, after the acknowledgement, it
takes an OS to service the interrupt.

– Aspects of responsiveness include:

• The amount of time required to initially handle the interrupt and
begin execution of the interrupt service routine (ISR). If execution
of the ISR requires a process switch, then the delay will be longer
than if the ISR can be executed within the context of the current
process.

• The amount of time to perform the ISR. Generally, this is
dependent on the hardware platform.

• The effect of interrupt nesting. If an ISR can be interrupted by the
arrival of another interrupt, then the service will be delayed.

Characteristics of Real-Time Operating Systems

COP 4600: Intro To OS (Real-time Scheduling) Page 11 © Dr. Mark Llewellyn

• Determinism and responsiveness together make up

the response time to external events.

• Response time requirements are critical for real-time

systems, because such systems must meet timing

requirements imposed by individuals, devices, and

data flows external to the system.

Characteristics of Real-Time Operating Systems

COP 4600: Intro To OS (Real-time Scheduling) Page 12 © Dr. Mark Llewellyn

Characteristics of Real-Time Operating Systems

User control
– User control is generally much broader in real-time OS than in ordinary

OS.

– In a typical non-real-time OS, the user either has no control over the
scheduling function of the OS or can only provide broad guidance, such
as grouping users into more than one priority class.

– In a real-time system, however, it is essential to allow the user fine-
grained control over task priority.

– In a real-time system the user can:

• Specify priority

• Distinguish between hard and soft tasks

• Specify paging and/or process swapping

• Specify which processes must always reside in main memory

• Specify which disk algorithms to use

• Specify the rights of processes in the various priority groups

COP 4600: Intro To OS (Real-time Scheduling) Page 13 © Dr. Mark Llewellyn

Characteristics of Real-Time Operating Systems

Reliability

– Reliability is typically far more important for real-time

systems than non-real-time systems.

– A transient failure in a non-real-time system may be solved

by simply rebooting the system. A processor failure in a

multiprocessor non-real-time system may result in a

reduced level of service until the failed processor is

repaired or replaced.

– A real-time system is responding to and controlling events

in real time. Loss or degradation of performance may have

catastrophic consequences, ranging from financial loss to

major equipment damage and even loss of life.

COP 4600: Intro To OS (Real-time Scheduling) Page 14 © Dr. Mark Llewellyn

Characteristics of Real-Time Operating Systems

Fail-soft operation

– Fail-soft operation is a characteristic that refers to the

ability of a system to fail in such a way as to preserve as

much capability and data as possible

– An important aspect of fail-soft operation is referred to as

stability.

– A real-time system is stable if, in cases where it is

impossible to meet all task deadlines, the system will meet

the deadlines of its most critical, highest-priority tasks,

even if some less critical task deadlines are not always met.

COP 4600: Intro To OS (Real-time Scheduling) Page 15 © Dr. Mark Llewellyn

Characteristics of Real-Time Operating Systems

Fail-soft operation (cont.)

– To meet these requirements, real-time OS typically include the
following features:

• Fast process or thread switch

• Small size (with corresponding minimal functionality)

• Ability to respond to external interrupts quickly

• Multitasking with interprocess communication tools such as semaphores,
signals, and events

• Use of sequential files that can accumulate data at a fast rate

• Preemptive scheduling based on priority

• Minimization of intervals during which interrupts are disabled

• Primitives to delay tasks for a fixed amount of time and to pause/resume
tasks

• Special alarms and time-outs

COP 4600: Intro To OS (Real-time Scheduling) Page 16 © Dr. Mark Llewellyn

• The heart of a real-time system is the short-term task scheduler.

• In designing such a scheduler, fairness and minimizing average response
time are not of supreme importance.

• What is important is that all hard real-time tasks meet their deadlines and
that as many soft real-time tasks as possible also meet their deadlines.

• Most contemporary real-time OS are unable to deal directly with
deadlines. Instead, they are designed to be as responsive as possible to
real-time tasks so that, when a deadline approaches, a task can be quickly
scheduled.

• From this point of view, real-time applications typically require
deterministic response times in the several-millisecond to submillisecond
range under a broad set of conditions. Leading edge applications, such
as in simulators for military aircraft, often have constraints in the range
of 10 -100 μs.

Real-Time Operating Systems

COP 4600: Intro To OS (Real-time Scheduling) Page 17 © Dr. Mark Llewellyn

• The figure on page 19 illustrates the spectrum of scheduling
protocol possibilities described below.

• Figure (a) represents a simple round-robin protocol, where a
real-time task would be added to the ready queue to await its
next time slice. The scheduling time is generally unacceptable
for real-time applications.

• Figure (b) represents a priority-driven nonpreemptive
scheduler in which real-time tasks are given high priority. In
this case, a real-time task that is ready would be scheduled
when the current process blocks or runs to completion. This
could lead to a delay of several seconds if a slow, low-priority
task were executing at a critical time. Again, this would be
unacceptable for real-time applications.

Real-Time Operating Systems

COP 4600: Intro To OS (Real-time Scheduling) Page 18 © Dr. Mark Llewellyn

• Figure (c) represents a more promising approach that
combines priorities with clock-based interrupts. In this case,
preemption occurs at regular intervals. When a preemption
point occurs, the currently running task is preempted if a
higher-priority task is waiting. This would include the
preemption of tasks that are part of the OS kernel. Such a
delay may be on the order of several milliseconds.

• While the approach illustrated in Figure (c) may be adequate
for some real-time applications, it will not suffice for more
demanding applications. In those cases, an approach that has
been successfully applied is referred to as immediate
preemption. This technique is illustrated in Figure (d). In this
case, the OS responds to an interrupt almost immediately,
unless the system is in a critical-code lockout section. In this
fashion scheduling delays can be reduced to 100 μs or less.

Real-Time Operating Systems

COP 4600: Intro To OS (Real-time Scheduling) Page 19 © Dr. Mark Llewellyn

Scheduling of a Real-Time Process

COP 4600: Intro To OS (Real-time Scheduling) Page 20 © Dr. Mark Llewellyn

Real-Time Scheduling

• Real-time scheduling approaches depend on:

1. Whether the system performs schedulability analysis.

2. If schedulability analysis is performed is it done statically

or dynamically.

3. Do the results of the schedulability analysis itself

produce a schedule that can be used to dispatch tasks a

run-time.

• Based on these considerations, the following four

classes of algorithms have been developed:

COP 4600: Intro To OS (Real-time Scheduling) Page 21 © Dr. Mark Llewellyn

Real-Time Scheduling

1. Static table-driven approaches
– These techniques perform a static analysis of feasible schedules of

dispatching. The result of the analysis is a schedule that determines,
at run time, when a task must begin execution.

2. Static priority-driven preemptive approaches
– Again, static analysis is performed, but no schedule is produced.

Rather, the analysis is used to assign priorities to tasks, so that a
traditional priority-driven scheduler can be used.

3. Dynamic planning-based approaches
– Feasibility is determined at run time (dynamically) rather than offline

prior to the start of execution (statically). An arriving task is accepted
for execution only if it is feasible to meet its time constraints. One of
the results of the feasibility analysis is a schedule or plan that is used
to decide when to dispatch this task.

4. Dynamic best effort approaches
– No feasibility analysis is performed. The system tries to meet all

deadlines and aborts any started process whose deadline is missed.

COP 4600: Intro To OS (Real-time Scheduling) Page 22 © Dr. Mark Llewellyn

1. Static Table-Driven Scheduling

• Static table-driven scheduling is applicable to tasks that are

periodic.

• Input to the analysis consists of the periodic arrival time,

execution time, periodic ending deadline, and relative priority

of each task.

• The scheduler attempts to develop a schedule that enables it to

meet the requirements of all periodic tasks.

• This is a predictable approach but one that is inflexible,

because any change to any task requirements requires that the

schedule be redone.

• Earliest-Deadline-First (EDF) or other periodic deadline

techniques (we’ll see them shortly) are typical of this category

of scheduling algorithms.

COP 4600: Intro To OS (Real-time Scheduling) Page 23 © Dr. Mark Llewellyn

2. Static Priority-Driven Preemptive Scheduling

• Static priority-driven scheduling makes use of the priority-

driven preemptive scheduling mechanism which is common to

most non-real-time multiprogrammed systems.

• In a non-real-time system, a variety of factors might be used to

determine priority. For example, in a time-sharing system, the

priority of a process changes depending on whether it is CPU-

bound or I/O bound.

• In a real-time system, priority assignment is related to the time

constraints associated with each task.

• One example of this approach is the rate monotonic algorithm

(we’ll see this shortly), which assigns static priorities to tasks

based on the length of their periods.

COP 4600: Intro To OS (Real-time Scheduling) Page 24 © Dr. Mark Llewellyn

3. Dynamic Planning-Based Scheduling

• With dynamic planning-based scheduling, after a task arrives,

but before its execution begins, an attempt is made to create a

schedule that contains the previously scheduled tasks as well as

the new arrival.

• If the new arrival can be scheduled in such a way that its

deadlines are satisfied and that no currently scheduled task

misses a deadline, then the schedule is revised to accommodate

the new task.

• If the new arrival cannot be scheduled in any manner that will

either satisfy its deadlines or will cause a currently scheduled

task to miss a deadline, then the new task is rejected and not

admitted to the system.

COP 4600: Intro To OS (Real-time Scheduling) Page 25 © Dr. Mark Llewellyn

4. Dynamic Best Effort Scheduling

• Dynamic best effort scheduling is the approach used by many

real-time systems that are currently commercially available.

• When a task arrives, the system assigns a priority based on the

characteristics of the task.

• Some form of deadline scheduling, such as EDF, is typically

used.

• Typically, the tasks are aperiodic and so no static scheduling

analysis is possible.

• With this type of scheduling, until a deadline arrives or until

the task completes, we do not know whether a timing

constraint will be met. This is a major disadvantage of this

form of scheduling. Its advantage is that it is easy to

implement.

COP 4600: Intro To OS (Real-time Scheduling) Page 26 © Dr. Mark Llewellyn

Deadline Scheduling
• Most contemporary real-time OS designed with the objective

of starting real-time tasks as rapidly as possible, and hence

emphasize rapid interrupt handling and task dispatching.

• Unfortunately, being able to start a real-time task rapidly is not

a particularly useful metric in evaluating real-time OS.

• Real-time applications are not generally concerned with sheer

speed but rather with completing (or starting) tasks at the most

valuable time, neither too early nor too late, despite dynamic

resource demands and conflicts, processing overloads, and

hardware or software faults.

• Priorities provide a crude tool, but do not capture the

requirement of completion (or initiation) at the most valuable

time.

COP 4600: Intro To OS (Real-time Scheduling) Page 27 © Dr. Mark Llewellyn

Deadline Scheduling (cont.)

• There have been a number of proposals for more powerful and

appropriate approaches to real-time task scheduling. Virtually

all of these are based on having additional information about

each task.

• In its most general form, the following information about each

task might be used:

– Ready time: The time at which a task becomes ready for execution. In the

case of a repetitive or periodic task, this is actually a sequence of times that

is known in advance. In the case of an aperiodic task, this time may be

known in advance, or the OS may only be aware when the task is actually

ready.

– Starting deadline: The time by which a task must begin.

– Completion deadline: The time by which a task must be completed. The

typical real-time application will either have starting deadlines or

completion deadline, but not both.

COP 4600: Intro To OS (Real-time Scheduling) Page 28 © Dr. Mark Llewellyn

Deadline Scheduling (cont.)

– Processing time: The time required to execute the task to

completion. In some cases, this is supplied. In others, the OS

measures an exponential average. Some systems do not utilize this

information at all.

– Resource requirements: The set of resources (other than the

processor) required by the task while it is executing.

– Priority: This measures the relative importance of the task. Hard
real-time tasks may have an “absolute” priority, with the system

failing if a deadline is missed. If the system is to continue to run no

matter what, then both hard and soft real-time tasks may be

assigned relative priorities as a guide to the scheduler.

– Subtask structure – A task may be decomposed into a mandatory

subtask and an optional subtask. Only the mandatory subtask

possesses a hard deadline.

COP 4600: Intro To OS (Real-time Scheduling) Page 29 © Dr. Mark Llewellyn

Deadline Scheduling (cont.)

• There are several dimensions to the real-time scheduling

function when deadlines are taken into account: which

task to schedule next, and what sort of preemption is

allowed.

• It can be shown, for a given preemption strategy and

using either starting or completion deadlines, that a policy

of scheduling the task with the earliest deadline

minimizes the fraction of tasks that miss their deadlines.

This holds true for both uniprocessor and multiprocessor

environments.

COP 4600: Intro To OS (Real-time Scheduling) Page 30 © Dr. Mark Llewellyn

Deadline Scheduling (cont.)

• The other critical design issue is that of preemption.

– When only starting deadlines are specified, then a nonpreemptive

scheduler makes sense. In this case, it would be the responsibility of

the real-time task to block itself after completing the mandatory or

critical section of its execution, allowing other real-time starting

deadlines to be satisfied. This would fit the pattern of Figure (b) on

page 19.

– When completion deadlines are used, a preemptive strategy is the most

appropriate. This situation is modeled by Figures (c) and (d) on page

19. For example, if task X is running and task Y is ready, there may be

circumstances in which the only way to allow both X and Y to meet

their completion deadlines is to preempt X, execute Y to completion,

and then resume X to completion.

COP 4600: Intro To OS (Real-time Scheduling) Page 31 © Dr. Mark Llewellyn

Deadline Scheduling (cont.)

• As an example of scheduling periodic tasks with completion
deadlines, consider a system that collects and processes data from
two sensors, A and B. The deadline for collecting data from sensor
A must be met every 20 msec, and that for B every 50 msec. It
takes 10 msec, including OS overhead, to process each sample of
data from A and 25 msec to process each sample of data from B.
Further suppose that the computer is capable of making a scheduling
decision every 10 msec.

• The table on page 32 summarizes the execution profile of the two
tasks.

• The figure on page 33 compares three scheduling techniques using
the execution profile from page 32. The first two schedules use a
priority based scheme. The final schedule uses earliest deadline
scheduling.

COP 4600: Intro To OS (Real-time Scheduling) Page 32 © Dr. Mark Llewellyn

Example Scheduling Two Periodic Tasks

COP 4600: Intro To OS (Real-time Scheduling) Page 33 © Dr. Mark Llewellyn

COP 4600: Intro To OS (Real-time Scheduling) Page 34 © Dr. Mark Llewellyn

Explanation of Example of Two Periodic Tasks

• As shown in the first schedule, if A has higher priority, the first task of B is
only given 20 msec of processing time, in two 10 msec chunks, by the time
its deadline arrives, and thus task B fails.

• The second schedule assumes that B has the higher priority, then A will
miss its first deadline as it has had no time allocation at all before the
deadline arrives.

• The final schedule uses the earliest deadline scheduling scheme. At time
t=0, both A1 and B1 arrive. Because A1 has the earliest deadline, it is
scheduled first. When A1 completes, B1 is given the processor. At time
t=20, A2 arrives. Because A2 has an earlier deadline than B1, B1 is
interrupted so that A2 can execute to completion. Then B1 is resumes at
time t=30. At time t=40, A3 arrives. However, B1 has an earlier deadline
than A3 and is allowed to complete execution at time t=45. A3 is then
given the processor and finishes at time t=55. Thus, all deadlines are met.

• This example works because the tasks are periodic and predictable
allowing a static table-driven scheduling approach to be developed.

COP 4600: Intro To OS (Real-time Scheduling) Page 35 © Dr. Mark Llewellyn

Example of Two Aperiodic Tasks with Starting Deadlines

• Now let’s consider a scheduling scheme for dealing with

aperiodic tasks with starting deadlines.

• The table on page 37 illustrates the arrival times and starting

deadlines for a set of five tasks each of which has an execution

time of 20 msec.

• The diagram on page 38 illustrates three different scheduling

schemes for these periodic tasks.

• A straight forward way to schedule such tasks is to always

schedule the ready task with the earliest deadline and let that task

run to completion.

• This is the first approach illustrated in the diagram on page 38.

In this example, note that although task B requires immediate

service, the service is denied.

COP 4600: Intro To OS (Real-time Scheduling) Page 36 © Dr. Mark Llewellyn

Example of Two Aperiodic Tasks with Starting Deadlines

• The risk in dealing with aperiodic tasks, especially with starting deadlines, is

that a starting deadline can be missed when a task arrives and the CPU is

already allocated to an earlier arriving task.

• A refinement of this technique will improve performance (achieve a higher

number of non-failures among real-time tasks) if deadlines can be known in

advance of the time that a task is ready. This policy is known as earliest

deadline with unforced idle times.

• This technique operates as follows: always schedule the eligible task with the

earliest deadline and let that task run to completion. An eligible task may not

be ready, and this may result in the processor remaining idle even though there

are ready tasks.

• This technique is illustrated as the second case on page 38. Notice in the

example that task A is not scheduled even though it is the only ready task.

Even though processor utilization is not maximum, all deadlines are met.

• FCFS is shown for comparison purposes only, note two deadlines are missed.

COP 4600: Intro To OS (Real-time Scheduling) Page 37 © Dr. Mark Llewellyn

Example of Two Aperiodic Tasks with Starting Deadlines

COP 4600: Intro To OS (Real-time Scheduling) Page 38 © Dr. Mark Llewellyn

COP 4600: Intro To OS (Real-time Scheduling) Page 39 © Dr. Mark Llewellyn

Rate Monotonic Scheduling

• One of the more promising methods of resolving multitask

scheduling conflicts for periodic real-time tasks is rate

monotonic scheduling (RMS).

• RMS assigns priorities to tasks on the basis of their periods.

• The diagram on page 41 illustrates the relevant parameters for

periodic tasks.

• The task’s period, T, is the amount of time between the arrival

of one instance of the task and the arrival of the next instance

of the task. The task’s rate (in Hertz) is simply the inverse of

its period (in seconds).

– For example, a task with a period of 50 msec occurs at a rate of 20 Hz.

20
05.0

1

1050

1
3

COP 4600: Intro To OS (Real-time Scheduling) Page 40 © Dr. Mark Llewellyn

Rate Monotonic Scheduling (cont.)

• Typically, the end of a task’s period is also the task’s hard

deadline, although some tasks may have earlier deadlines.

• The execution time C, is the amount of processing time

required for each occurrence of the task.

– In a uniprocessor system, this implies that the execution time must be no

greater than the period, i.e., C ≤ T.

• If a periodic task is always to run to completion, that is, if no

instance of the task is ever denied service because of

insufficient resources, then the utilization of the processor by

this task is U = C/T.

– For example, if a task has a period of 80 msec and an execution time of

55 msec, its processor utilization is 55/80 = 0.6875 = 68.75%.

COP 4600: Intro To OS (Real-time Scheduling) Page 41 © Dr. Mark Llewellyn

Periodic Task Timing Diagram

COP 4600: Intro To OS (Real-time Scheduling) Page 42 © Dr. Mark Llewellyn

Rate Monotonic Scheduling (cont.)

• For RMS, the highest-priority task is the one with the

shortest period, the second highest-priority task is the

one with the second shortest periods, and so on.

• When more than one task is available for execution,

the one with the shortest period is serviced first.

• Plotting the priority of tasks as a function of their rate,

the result is a monotonically increasing function;

hence the name rate monotonic scheduling. This is

illustrated on the next page.

COP 4600: Intro To OS (Real-time Scheduling) Page 43 © Dr. Mark Llewellyn

COP 4600: Intro To OS (Real-time Scheduling) Page 44 © Dr. Mark Llewellyn

Evaluation of Periodic Scheduling Algorithms

• One measure of the effectiveness of a periodic scheduling

protocol is whether or not it guarantees that all hard deadlines

are met.

• Suppose that we have n tasks, each with a fixed period and

execution time.

• For it to be possible to meet all deadlines the following

inequality must hold:

• The sum of the processor utilizations of the individual tasks

cannot exceed a value of 1, which corresponds to the total

utilization of the processor.

1
2

2

1

1
n

n

T

C

T

C

T

C

COP 4600: Intro To OS (Real-time Scheduling) Page 45 © Dr. Mark Llewellyn

Evaluation of Periodic Scheduling Algorithms

• The equation on the previous page provides a bound
on the number of tasks that a perfect scheduling
algorithm can successfully schedule.

• For any particular algorithm, the bound may be lower.

• It has been shown for RMS that the following
inequality holds:

• Using this inequality, we can determine the upper
bounds for RMS. This is illustrated in the table on the
following page.

 12 /1

2

2

1

1 n

n

n n
T

C

T

C

T

C

COP 4600: Intro To OS (Real-time Scheduling) Page 46 © Dr. Mark Llewellyn

Evaluation of Periodic Scheduling Algorithms

n n(21/n – 1)

1 1.0

2 0.828

3 0.779

4 0.756

5 0.743

6 0.734

●●● ●●●

∞ ln 2 ≈ 0.693

Value of the RMS upper bound

Example: Consider three periodic tasks.

Task P1: C1 = 20; T1 = 100; U1 = 0.2

Task P2: C2 = 40; T2 = 150; U2 = 0.267

Task P3: C3 = 100; T3 = 350; U3 = 0.286

Total utilization = 0.2 + 0.267 + 0.286 =

0.753

Since the total utilization required for the

three tasks is less than the upper bound for

RMS (0.753 < 0.779), we know that if RMS

is used, all tasks will be successfully

scheduled.

 779.0123 3/1

2

2

1

1
n

n

T

C

T

C

T

C

COP 4600: Intro To OS (Real-time Scheduling) Page 47 © Dr. Mark Llewellyn

Evaluation of Periodic Scheduling Algorithms

• Interestingly, it can also be shown that the upper bound of the equation on page 44
also holds for earliest deadline scheduling.

• Thus, it is possible to achieve greater overall processor utilization and therefore
accommodate more periodic tasks with earliest deadline scheduling than with
RMS.

• Nevertheless, RMS has been widely adopted for use in industrial applications.
Some of the reasons for this are:

1. The performance difference is small in practice. The upper bound given by the
equation on page 45 is a conservative one and, in practice, utilization as high as 90% is
often achieved.

2. Most hard real-time systems also have soft real-time components that can execute at
lower priority levels to absorb the processor time that is not utilized with RMS
scheduling of hard real-time tasks.

3. Stability is easier to achieve with RMS. When a system cannot meet all deadlines
because of overload or transient errors, the deadlines of essential tasks need to be
guaranteed provided that this subset of tasks is schedulable. In a static priority
assignment approach, one only needs to ensure that essential tasks have relatively high
priorities. This can be done in RMS by structuring essential tasks to have short periods
or by modifying the RMS priorities to account for essential tasks. With earliest
deadline scheduling, a periodic task’s priority changes from one period to another. This
makes it more difficult to ensure that essential tasks meet their deadlines.

COP 4600: Intro To OS (Real-time Scheduling) Page 48 © Dr. Mark Llewellyn

Priority Inversion

• Priority inversion is a phenomenon that can occur in any
priority-based preemptive scheduling scheme but is particularly
relevant in the context of real-time scheduling.

• The best known instance of priority inversion involved the Mars
Pathfinder mission.

– The rover robot landed on Mars on July 4, 1997 and began gathering and
transmitting data back to Earth. A few days into the mission, the lander
software began experiencing total system resets, each resulting in the
loss of data. After much effort by the JPL team that built the Pathfinder,
the problem was traced to priority inversion.

• In any priority scheduling scheme, the system should always be
executing the task with the highest priority.

• Priority inversion occurs when circumstances within the system
force a higher priority task to wait for a lower priority task.

COP 4600: Intro To OS (Real-time Scheduling) Page 49 © Dr. Mark Llewellyn

Priority Inversion (cont.)

• A simple example of priority inversion occurs if a lower

priority task has locked a resource (such as a device or

synchronization construct) and a higher-priority task attempts

to lock that same resource. The higher priority resource

becomes blocked until the resource becomes available.

• If the lower-priority task finishes with the resource quickly

and releases it, the higher-priority task may quickly resume

and it might be possible that no real-time constraints are

violated. However, the opposite may also be true, in which

case the lower-priority task controls the resource for too long

to allow the higher-priority task to meet its deadline.

COP 4600: Intro To OS (Real-time Scheduling) Page 50 © Dr. Mark Llewellyn

Priority Inversion (cont.)

• An even more serious condition is referred to as an unbounded

priority inversion, in which the duration of a priority inversion

depends not only on the time required to handle a shared

resource but also on the unpredictable actions of other unrelated

tasks as well.

• The priority inversion experienced in the Pathfinder software

was unbounded and serves as a good example of the

phenomenon.

COP 4600: Intro To OS (Real-time Scheduling) Page 51 © Dr. Mark Llewellyn

Priority Inversion In The Mars Pathfinder

• The Pathfinder software included the following three tasks in decreasing

order of priority:

– T1: Periodically check the health of the spacecraft systems and software.

– T2: Process image data.

– T3: Perform an occasional test on equipment status.

• After T1 executes, it reinitializes a time to its maximum value. If this timer

ever expires, it is assumed that the integrity of the lander software has

somehow been compromised. The processor is halted, all devices are reset,

the software is completely reloaded, the spacecraft systems are tested, and

the system starts over.

• The recovery sequence does not complete until the next day. T1 and T3 share

a common data structure, protected by a binary semaphore s.

• The illustration on the next page shows the sequence of events that caused

the priority inversion.

COP 4600: Intro To OS (Real-time Scheduling) Page 52 © Dr. Mark Llewellyn

Priority Inversion In The Mars Pathfinder

• The set of events that caused the priority inversion is:

– t1: T3 begins executing

– t2: T3 locks semaphore s and enters its critical section.

– t3: T1 which has higher priority than T3, preempts T3 and begins executing.

– t4: T1 attempts to enter its critical section but is blocked because the semaphore is
locked by t3; T3 resumes execution in its critical section.

– t5: T2 which has higher priority than T3, preempts T3 and begins execution.

– t6: T2 is suspended for some reason unrelated to T1 and T2, and T3 resumes.

– t7: T3 leaves its critical section and unlocks the semaphore. T1 preempts T3, locks
the semaphore, and enters its critical section.

• In this set of circumstances, T1 must wait for both T3 and T2 to complete and
fails to reset the timer before it expires.

• The illustration on the next page shows the sequence of events that caused the
priority inversion.

COP 4600: Intro To OS (Real-time Scheduling) Page 53 © Dr. Mark Llewellyn

Priority Inversion In The Mars Pathfinder

• Duration of a priority inversion depends on unpredictable actions of other

unrelated tasks

COP 4600: Intro To OS (Real-time Scheduling) Page 54 © Dr. Mark Llewellyn

Priority Inheritance

• In practical systems, two alternative approaches are used to avoid

unbounded priority inversion: priority inheritance protocol and

priority ceiling protocol.

• The basic idea of priority inheritance is that a lower-priority task

inherits the priority of any higher-priority tasks pending on a

resource they share.

• This priority change takes place as soon as the higher-priority task

blocks on the resource, it should end when the resource is

released by the lower-priority task.

• Using the Pathfinder example again, the following scenario

illustrates how priority inheritance resolves the unbounded

priority inversion that occurred.

COP 4600: Intro To OS (Real-time Scheduling) Page 55 © Dr. Mark Llewellyn

Priority Inheritance Resolving Pathfinder Unbounded Priority Inversion

• The relevant set of events is:

– t1: T3 begins executing

– t2: T3 locks semaphore s and enters its critical section.

– t3: T1 which has higher priority than T3, preempts T3 and begins executing.

– t4: T1 attempts to enter its critical section but is blocked because the semaphore is

locked by t3; T3 is immediately and temporarily assigned the same priority as T1.

T3 resumes execution in its critical section.

– t5: T2 is ready to execute but, because T3 now has higher priority, T2 is unable to

preempt T3.

– t6: T3 leaves its critical section and unlocks the semaphore: Its priority level is

downgraded to its previous default level. T1 preempts T3, locks the semaphore, and

enters its critical section.

– t7: T1 is suspended for some reason unrelated to T2 and T2 begins executing.

• The illustration on the next page shows this sequence of events.

COP 4600: Intro To OS (Real-time Scheduling) Page 56 © Dr. Mark Llewellyn

Priority Inheritance

• Lower-priority

task inherits the

priority of any

higher priority

task pending on

a resource they

share

COP 4600: Intro To OS (Real-time Scheduling) Page 57 © Dr. Mark Llewellyn

Priority Ceiling

• In the priority ceiling approach, a priority is associated with each

resource.

• The priority assigned to a resource is one level higher than the

priority of its highest-priority user.

• The scheduler then dynamically assigns this priority to any task

that accesses the resource.

• Once the task finishes with the resource, its priority returns to

normal.

